欢迎访问同济大学海洋与地球科学学院!

教授、博导

zhaoluanxiao @ tongji.edu.cn

http://ocean.tongji.edu.cn/space/zhaoluanxiao/

  • 教育背景

    2010/8-2014/5,休斯敦大学,地球物理学,博士

    2007/9-2010/3,同济大学,地球物理学,硕士

    2003/9-2007/7,中国地质大学(武汉),地球物理学,学士

  • 工作经历

    2021/12-至今,同济大学海洋与地球科学学院教授、博导

    2023/4-至今,同济大学本科生院副院长(挂职)

    2020/7-至今,同济大学地球物理学专业,系主任

    2018/8-至今,同济大学地球物理学专业,博导

    2018/1-2-2021/12,同济大学,海洋与地球科学学院,副教授

    2014/12-2017/12,同济大学,海洋与地球科学学院,助理研究员

    2017/6-2017/9, 2018/1-2018/2, 道达尔勘探和生产研发中心(法国波城),访问科学家

    2014/5-2014/8,BP石油,储层地球物理研发中心(休斯敦),研发地球物理工程师(实习)

    2013/5-2013/8,BP石油,储层地球物理研发中心(休斯敦),研发地球物理工程师(实习)

    2012/5-2012/8,ExxonMobil埃克森美孚,上游勘探开发研发中心地震多分量研发组(休斯敦),研发地球物理工程师(实习)

  • 教学与科研成果

    研究兴趣

    1.人工智能地球物理勘探,基于机器学习和深度学习的储层参数地震预测和地质特征地震刻画;

    2.岩石物理和地质力学:实验岩石物理、数字岩石物理、复杂多孔介质的模型表征、地质工程一体化研究

    3.多源地学信息融合的人工智能地质建模;海洋与地球科学大数据分析和挖掘

    4.与地球能源有关的定量地震解释、地震综合刻画相关研究; CO2封存、H2存储地球物理相关研究;


    科研项目

    1.国家自然科学基金联合基金重点项目,强非均质性地层的各向异性动静态力学参数响应机理与地质力学评价方法U23B20157,主持,2024/1-2027/12

    2.国家自然科学基金面上项目,基于水力压裂能量分析的页岩储层可压裂性评价:物理机理和模型表征,42174134),主持,2022/1-2025/12

    3.国家自然科学基金面上项目,不同成熟度陆相有机质泥页岩地震岩石物理响应机理,41874124,主持,2019/1-2022/12

    4.国家重点研发计划课题,基于南海大洋钻探岩石物理分析的弹性波地震数据定量解释研究,主持,2018/8-2022/08

    5.国家重点研发计划子课题,CO2驱油与封存多尺度岩石物理特性与三维地震响应特征研究,主持,2023/12-2028/12

    6.国际合作科研项目(法国道达尔勘探和生产研发中心资助),Machine Learning Based Carbonate Reservoir Properties Prediction(基于机器学习的碳酸盐岩储层参数预测, 主持, 2018/10-2020/6.

    7.国际合作科研项目(法国道达尔勘探和生产研发中心资助),Petrophysical and Geophysical characterization of pore types in carbonates, 主持,2017/3-2018/6

    9.企业委托科研项目,基于叠前三维地震正演和机器学习的礁滩相储层非均质性分布预测,主持,2021/6-2022/6,

    10.企业委托科研项目,基于深度学习的岩性预测和储层刻画,主持,2019/10-2020/10,

    11.企业委托科研项目,机器学习框架下中深层碳酸盐岩储层地震刻画新方法,主持,2019/09-2020/05,

    12.企业委托科研项目,非常规页岩油气储层参数的智能预测,2018/03-2019/10

    13.中科院战略先导科技专项,深储层岩石物理响应机理,任务负责人,2017/1-2022/8

    14.国家自然科学青年基金,地震波在非均质多孔介质分界面上的反射特征及其对储层刻画的启示, 41504087,主持,2016/1-2018/12

    15.企业委托科研项目, 深层碳酸盐岩岩溶储层的弹性和衰减特征的数字岩石物理表征技术,主持,2022/12-2023/12

    16.企业委托科研项目,非均质体波致流体频散与衰减模型研究,主持,2022/4-2023/12

    17.企业委托科研项目,页岩油数字岩心建模及地震甜点预测技术,主持,2023/3-2023/12

    18.企业委托科研项目,裂缝性多孔介质岩石物理建模和非常规储层可压裂性评价研究,主持,2017/4-2018/12,

    19.企业委托科研项目,不同成熟度有机质页岩储层地震岩石物理研究,主持,2015/10-2016/12 

     

    教学情况

    主讲课程:

    《岩石物理学》(本科生)、《计算机地学应用(MATLAB的地学应用)》(本科生)

    《岩石物理与地质力学》(研究生)《深度学习与人工智能基础及其在地球物理中的应用》(研究生,承担部分)、储层地球物理学(研究生、承担部分)      

    《地球物理学》全英文(博士生)《地球物理学进展》(博士研究生,承担部分)

     

    指导研究生

    每年计划招收有地球物理学、地质学、海洋科学、物理学、数学、计算机背景的硕士生、博士生、博士后3-5名。

    博士生:

    蔡佳宁(2023-)直博:同济大学

    陈远远(2022-)硕士:同济大学

    孟巾钰(2022-)硕士:中国石油大学(北京)

    闫顶点(2021-)硕士:吉林大学

    王一戎(2021-)硕士:同济大学 瑞士洛桑大学联合培养1年

    朱津琬(2020-)直博:中国地质大学(武汉))

    阿卜杜拉(2019-)硕士:中国地质大学(北京)

    蔡振家(2019-)硕士:中国科学院地质与地球物理研究所

     

    硕士生:

    邱宣淦(2023-)本科:中国海洋大学

    徐澄贝(2023-)本科:长安大学

    冯亚军(2022-)本科:中国地质大学(武汉)

    赵亚喜(2022-)本科:同济大学

    竺炫莹(2021-)本科:同济大学

    刘婧宇(2021-)本科:中国地质大学(武汉)

    许明辉(2020-2023)本科:同济大学 毕业去向:斯坦福大学读博士

    陈景妍(2020-2023)本科:同济大学 毕业去向:杭州某知名高中任教

    陈远远(2019-2022 )  本科:中国地质大学(武汉)毕业去向:同济大学读博士

    李珂瑊(2018-2021)本科:中国矿业大学 毕业去向:滴滴出行科技有限公司

    王一戎(2018- 2021)本科:同济大学 毕业去向:同济大学读博士

     

    本科-课外科研项目:

    邹采枫(2018-2021),现在加州理工学院攻读博士

    缪楠(2015-2017),现在腾讯科技公司工作

     

    研究成果

    发表的期刊论文 (*代表通讯作者)

    2024

    [81] Zhao, L., J. Liu, M. Xu*, Z. Zhu, Y. Chen, and J. Geng, 2024, Rock Physics guided machine learning for shear sonic log prediction, Geophysics, 89(1), D75-D87

    [80] Zhao, L., X. Zhu, X. Zhao, C. You, M. Xu, T. Wang*, and J. Geng, 2024, Deep carbonate reservoir characterization using multi seismic attributes:A comparison of unsupervised machine learning approaches, Geophysics, 89 (2), B65-B82

    [79] Yang, Z., H. Cao, L. Zhao, X. Yan, Y. Wang, and W. Zhu*, The Effects of Pore Structure on the Wave Dispersion and Attenuation Due to Squirt Flow: Dynamic Stress-Strain Simulation on a Simple Digital Pore-Crack Mode, Geophysics, 89(3)

    [78] Chen, M*., J. Geng, and L. Zhao, A hybrid numerical model for coupled hydro-mechanical analysis during CO2 injection into heterogeneous unconventional reservoirs, Gas Science and Engineering, 205244

    [77]Long, T., X. Qin, Q. Wei, L. Zhao*, Y. Wang, F. Chen, M. Myers, Y. Zheng, and D. Han, Quantifying the influences of clay-bound water on wave dispersion and attenuation signatures of shale: An experimental study, Geophysics, 89(2), 1-88

     

    2023

    [76] Zhao, L*., J. Zhu, X. Qin, R. Gong, Z. Cai, F. Zhang, D. Han, and J. Geng, Joint geochemisty-rock physics modeling: Quantifying the effects of thermal maturity on the elastic and anisotropic properties of organic shale, Earth-Science Reviews, 247,104627

    [75] Yan, D., L. Zhao*, Y. Wang, Y. Zhang, Z. Cai, X. Song, F. Zhang, and J. Geng, 2023, Heterogeneity Indexes of unconventional reservoir shales: quantitatively characterizing mechanical properties and failure behaviors, International Journal of Rock Mechanics and Mining Sciences, 171, 105577  

    [74] Wang. J*, B. Ma, L. Zhao, P. Su*,  and S. Wu, 2023, Rock physics diagnostics to characterize early diagenetic processes in hemipelagic calcareous ooze in the northern South China Sea margin, Marine Geophysical Research, 44, 20

    [73]Liu, J., L. Zhao*, M. Xu, X. Zhao, Y. You, J. Geng, 2023, Porosity prediction from prestack seismic data via deep learning: Incorporating low-frequency porosity model, Journal of Geophysics and Engineering, 20, 1016–1029

    [72] 耿建华*, 赵峦啸, 麻纪强, 朱津琬, 姚秋粮, 高志前, 何治亮,2023,超深碳酸盐岩油气储层岩石弹性性质高温高压超声实验研究,地球物理学报, 66(9), 3959-3974

    [71] Qin, X., L. Zhao*, J. Zhu, and D. Han, 2023, Modeling the elastic characteristics of overpressure due to thermal maturation in organic shales, Advances in Geo-Energy Research 10 (3), 174-188

    [70] Wang, Y., L. Zhao*, Z. Yang, H. Cao, and J. Geng, 2023, Rock Physics Modeling Elastic Properties of Multiscale Fractured Rocks, Geophysics, 88 (6), MR289–MR304.

    [69] Gao, S., M. Xu, L. Zhao*, Y. Chen, J. Geng, 2023, Seismic predictions of fluids via supervised deep learning: Incorporating various class-rebalance strategies, Geophysics, 88 (4), M185-M200

    [68] Zhao, L., Z. Cai, X. Qin*, Y. Wang, L. Teng, D. Han, F. Zhang, and J. Geng, 2023, An Empirical Elastic Anisotropy Prediction Model in Self-sourced Reservoir Shales and Its Influencing Factors Analysis, Geophysics, 88 (3), MR117-MR126

    [67] Zhu, W., L. Zhao*, Z. Yang, H. Cao, Y. Wang, W. Chen, R. Chen, 2023, Stress Relaxing Simulation on Digital Rock: Characterize Attenuation due to Wave-induced Fluid flow and Scattering, Journal of Geophysical Research: Solid Earth, e2022JB024850

    [66] Li, H, Q. Huang, L. Zhao*, Y. Wang, Z. Cai, J. Gao, and D. Han, 2023, The seismic dispersion and attenuation characteristics of organic shales, Geophysical Journal International, 232 (3), 1785-1802.

    [65] Sun, S., J. Nie, B. Wang, L. Zhao, Z. He, H. Zhang, D. Chen, J. Geng*, 2023, Generating complete synthetic datasets for high‐resolution amplitude‐versus‐offset attributes deep learning inversion, Geophysical Prospecting, 71 (6), 891-913 

    [64] Hussein, A., L. Zhao*, Y. Chen, and J. Wang, 2023,  Rock Physics characteristics of marine sediments in the South China Sea: link between the geological factors and elastic properties, Frontiers in Earth Science, 10, 931611

    [63] Zou, C., L. Zhao*, F. Hong, Y. Chen, Y. Wang, and J. Geng, 2023, A comparison of machine-learning methods to predict porosity in carbonate reservoirs from seismic-derived elastic properties, Geophysics, 88 (2), B101-B120

    [62] 何治亮*, 赵向原, 张文彪, 吕心瑞, 朱东亚,赵峦啸, 胡松, 郑文波,  刘彦锋, 丁茜, 段太忠, 胡向阳, 孙建芳, 耿建华, 深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向, 石油与天然气地质, 2023, 44(1): 16-33 doi:10.11743/ogg20230102

    [61] Sun, S., L. Zhao, H. Chen, Z. He, and J. Geng*, 2023, Pre-stack seismic inversion for elastic parameters using model-data-driven generative adversarial networks, Geophysics, 88 (2), M87-M103

    [60] 赵峦啸,麻纪强,李珂瑊,朱津琬,高志前、何治亮、耿建华*,2023,超深层碳酸盐岩储层地震岩石物理特征和模型表征,地球物理学报,66(1),16-33

     

    2022

    [59] Qin, X, L. Zhao*, Z. Cai, Y. Wang, M. Xu, F. Zhang, D. Han, J. Geng, 2022, Compressional and shear wave velocities relationship in anisotropic organic shales, Journal of Petroleum Science and Engineering, 111070

    [58] Ba, J., H. Zhu, L.Y. Fu*, and L. Zhao, 2022, Challenges in seismic rock physics, Journal of Geophysics and Engineering, 19 (6), 1367-1369

    [57] Wu, S., B. Wang, L. Zhao, H. Liu, and J. Geng*, 2022, High‐efficiency and High‐precision Seismic Trace Interpolation for Irregularly Spatial Sampled Data by Combining an Extreme Gradient Boosting Decision Tree and Principal Component Analysis, Geophysical Prospecting, doi.org/10.1111/1365-2478.13270

    [56] Qin, X*, D. Han, and L. Zhao, 2022,  Measurement of Grain Bulk Modulus on Sandstone Samples from the Norwegian Continental Shelf, Journal of Geophysical Research: Solid Earth, e2022JB024550

    [55] Wang, Y., L. Zhao*, C. Cao, Q. Yao, Z. Yang, H. Cao, and J. Geng, 2022, Wave-induced fluid pressure diffusion and anelasticity in partially saturated rocks: the influences of boundary conditions, Geophysics, 87(5), MR247-MR263

    [54] Xu, M.. L. Zhao*, S. Gao, X. Zhu, and J. Geng, 2022, Joint use of multi-seismic information for lithofacies prediction via supervised convolutional neural networks, Geophysics, 87(5), M151-M162

    [53] Wang, Y., L. Zhao*, D. Han, Q. Wei, Y. Zhang, H. Yuan, and J. Geng, 2022Experimental Quantification of the Evolution of the Static Mechanical Properties of Tight Sedimentary Rocks during Increasing-amplitude Load and Unload Cycling, Geophysics, 872,MR73-MR83

    [52] Cai, J*., L. Zhao, F. Zhang, and W. Wei, 2022, Advances in multiscale rock physics for unconventional reservoirs, Advances in Geo-Energy Research, 6 (4), 271-275

    [51] Guo, J.,L. Zhao, X. Chen*, Z. Yang, H. Li, C. Liu, 2022, Theoretical modelling of seismic dispersion, attenuation, and frequency-dependent anisotropy in a fluid saturated porous rock with intersecting fractures, Geophysical Journal International, 230, 580-606

    [50] An, M., F. Zhang*, K. Min, D. Elsworth, C. He, and L. Zhao, 2022Frictional Stability of Metamorphic Epidote in Granitoid Faults Under Hydrothermal Conditions and Implications for Injection-Induced SeismicityJGR-solid earth, 127 (3), e2021JB023136

    [49] Zhang, Y., J. Ma, Y. Wang*, F. Wang, X. Li, and L. Zhao, 2022, Quantification of the Fracture Complexity of Shale Cores After Triaxial Fracturing, Frontiers in Earth Science, 10:863773.doi: 10.3389/feart.2022.863773 

    [48] Wang, Y., L. Niu, L. Zhao, B. Wang, Z. He, H. Zhang, D. Chen, and J. Geng*, 2022, Gaussian Mixture Model Deep Neural Network and Its Application in Porosity Prediction of Deep Carbonate Reservoir, Geophysics, 87 (2), M59-M72, doi.org/10.1190/geo2020-0740.1

    [47] Wang, Y*, D. Han, L. Zhao, H. Li, T. Long, J. Hamutoko, 2022, Static and Dynamic Bulk Moduli of Deepwater Reservoir Sands: Influence of Pressure and Fluid Saturation, Lithosphere, 4266697, doi.org/10.2113/2022/4266697

    [46] Li, S., K. Zhou, L. Zhao, Q. Xu, and J. Liu*, 2022, An improved lithology identification approach based on representation enhancement by logging feature decomposition, selection and transformation, Journal of Petroleum Science and Engineering, 109842

     

    2021

    [45] Zou, C., L. Zhao*, M. Xu, Y. Chen, and J. Geng, 2021, Porosity Prediction with Uncertainty Quantification from Multiple Seismic Attributes Using Random Forest, Journal of Geophysical Research: Solid Earth, 1267, e2021JB021826

    [44] Chen, Y., L. Zhao*, J. Pan, C. Li, M. Xu, K. Li, F. Zhang, and J. Geng, 2021, Deep carbonate reservoir characterization using multi-seismic attributes via machine learning with physical constraints, Journal of Geophysics and Engineering, 18(5), 761-775

    [43] Nie, J., Z. Qu, Y. Cheng*, X. Wang, J. Zhu, S. Sun, L. Zhao, and J Geng*, 2021, Diagnosing of clay distribution in argillaceous sandstone by a rock physics template, Geophysical Prospecting, 69 (8-9), 1700-1715

    [42] Zhao, L*., C. Zou, Y. Chen, W. Shen, Y. Wang, H. Chen, and J. Geng, 2021, Fluids and lithofacies prediction based on integration of well-log data and seismic inversion: a machine learning approach, Geophysics, 86(4), M151–M165

    [41] Ren, J., Y. Wang*, D. Han, L. Zhao, T. Long, and S. Tang, 2021, Determining crack initiation stress in unconventional shales based on strain energy evolution, Journal of Geophysics and Engineering, 18(5), 642-652.

    [40] Yuan, H*., Y. Wang, D. Han, H. Li, and L. Zhao, 2021, Velocity measurement of North Sea heavy oil sands under changing pressure and temperature, Journal of Petroleum Science and Engineering, 205, 108825.

    [39] Guo, J., L. Zhao*, Z. Yang, and H. Li, 2021, Analytical model for rock effective elastic properties with aligned elliptical cracks embedded in transversely‐isotropic background, Geophysical Prospecting, 69,1515-1530

    [38] An, M., F. Zhang*, E. Donstov, D. Elsworth, H. Zhu, and L. Zhao, 2021, Stress Perturbation Caused by Multistage Hydraulic Fracturing: Implications for Deep Fault Reactivation, International Journal of Rock Mechanics and Mining Sciences, 141, 104704

    [37] 朱伟,赵峦啸*,王一戎,2021, 数字岩心宽频带动态应力应变模拟方法及其对含裂隙致密岩石频散和衰减特征的表征地球物理学报646),2086-2096

    [36]Zhao, L*., Y. Wang, Q. Yao, J. Geng, H. Li, H. Yuan, and D. Han, 2021, Extended Gassmann Equation with Dynamic Volumetric Strain: Modeling Wave Dispersion and Attenuation of Heterogenous Porous Rocks, Geophysics, 86(3), MR149-MR164

    [35] Teillet, T., F. Fournier, L. Zhao*, J. Borgomano, F. Hong, 2021, Geophysical pore type inversion in carbonate reservoir: integration of cores, well-logs, and seismic data (Yadana field, offshore Myanmar), Geophysics, 86(3), B149-B164.

    [34] Wang, Y., L. Zhao*, D. Han, A. Mitra, H. Li, ans S. Aldin, 2021, Anisotropic Dynamic and Static Mechanical Properties of Organic-rich Shale: The Influence of Stress, Geophysics,86(2), C51-C63

    [33] 赵峦啸,刘金水,姚云霞,钟锴,麻纪强,邹采枫,陈远远,付晓伟,朱晓军,朱伟林,耿建华*, 2021, 基于随机森林算法的陆相沉积烃源岩定量地震刻画:以东海盆地长江坳陷为例,地球物理学报64(2), 700-715

    [32] Niu, L., J. Geng*, X. Wu, L. Zhao, and H. Zhang, 2021, Data-driven method for an improved linearised AVO inversion, Journal of Geophysics and Engineering, 18, 1-22

     

    2020 

    [31] Li, H., L. Zhao*, D. Han, J. Gao, H. Yuan, and Y. Wang, 2020,Experimental study on frequency-dependent elastic properties of weakly consolidated marine sandstone: effects of partial saturation, Geophysical Prospecting, 68 (9), 2808-2824.

    [30] 钟广法*,张迪,赵峦啸,大洋钻探天然气水合物储层测井评价研究进展,2020, 天然气工业40(8), 25-44

    [29] Li, H*., D. Han, Q. Huang, L. Zhao, Q. Yao, and J. Gao, 2020, Precision analysis of dynamic force-deformation measurement: numerical modeling and experimental data, Journal of Geophysics and Engineering, 17(6), 980-992

    [28] Wang, Y., L. Zhao*, D. Han, X. Qin, J. Ren, and Q. Wei, 2020, Micro-mechanical Analysis of the Effects of Stress Cycles on the Dynamic and Static Mechanical Properties of Sandstone, InternationalJournal of Rock Mechanics and Mining Sciences, 134,104431

    [27] Yang, J., J. Geng*, and L. Zhao, 2020, A frequency-decomposed nonstationary convolutional model for amplitude-versus-angle-frequency forward waveform modeling in attenuative media, Geophysics,85(6), T301-T314.

    [26] Yuan, H., D. Han, H. Li, L. Zhao*, and W. Zhang, 2020, The effect of rock frame on elastic properties of bitumen sands, Journal of Petroleum Science and Engineering, 194, 107460

    [25] Li, H., D. Wang, J. Gao, M. Zhang, Y. Wang, L. Zhao*, Z. Yang, 2020, Role of saturation on elastic dispersion and attenuation of tight rocks: An experimental study. Journal of Geophysical Research: Solid Earth, 1254),e2019JB018513.

    [24] Zhao, L*., C. Cao, Q. Yao, Y. Wang, H. Li, H. Yuan, J. Geng, and D. Han, 2020, Gassmann Consistency for Different Inclusion-based Effective Medium Theories: Implications for Elastic interactions and Poroelasticity, Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018328.

    [23] Wang, Y., H. Li*, D. Han, L. Zhao, J. Ren, and Y. Zhang, 2020, A comparative study of the stress-dependence of dynamic and static moduli for sandstones, Geophysics, 85(4), MR179-MR190.

    [22] 朱伟,赵峦啸*,王晨晨,单蕊,2020,基于数字岩心动态应力应变模拟的非均匀孔隙介质波致流固相对运动刻画,地球物理学报63(6)2386-2399

    [21] Zhou, K., J. Zhang, Y. Ren, Z. Huang, and L. Zhao*, 2020, A gradient boosting decision tree algorithm combining synthetic minority over-sampling technique for lithology identification, Geophysics, 85(4), WA147-WA158

    [20] 陈树民*, 韩德华, 赵海波, 陈丰, 王团, 唐晓花, 赵峦啸, 秦玄, 2020,松辽盆地古龙页岩油地震岩石物理特征及甜点预测技术, 大庆石油地质与开发393),107-116

    [19] Zhao, L.*, Y. Wang, X. Liu, J. Zhang, Y. Liu, X. Qin, K. Li, and J. Geng, 2020, Depositional impact on the seismic elastic characteristics of the organic shale reservoir: A case study of Longmaxi-Wufeng shale in Fuling gas field, Sichuan Basin, Geophysics, 85(2), B23-B33.

     

    2019

    [18] Yuan, H*., D. Han, L. Zhao, Q. Huang, and W. Zhang, 2019, Attenuation analysis of heavy oil sands –based on lab measurements, Geophysics, 84(5), B299-B309

    [17] Wang, J*., S. Wu, L. Zhao, W. Wang, J. Wei, and J. Sun, 2019, An effective method for shear-wave velocity prediction in sandstones, Marine Geophysical Research, 40 (4), 655-664

    [16] Qin, X*., D. Han, and L. Zhao, 2019, Elastic characteristics of overpressure due to smectite-to-illite transition based on micro-mechanism analysis, Geophysics, 84(4), WA23-WA42.

     

    2018

    [15] Zhao, L*., X. Qin, J. Zhang, X. Liu, D. Han, J. Geng, and Y. Xiong, 2018, An effective reservoir parameter for seismic characterization of organic shale reservoir, Surveys in Geophysics, 2018, 39(3), 509-541

    [14] Yuan, H*., D. Han, L. Zhao, Q. Huang, and W. Zhang, 2018, Rock physics characterization of bitumen carbonates: a case study, Geophysics, 83(3), B119-B132.

     

    2017 

    [13] Zhao, L*., H. Yuan, J. Yang, D. Han, J. Geng, R. Zhou, H. Li, and Q. Yao, 2017, Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks with Applications in Time-lapse Monitoring of a Heavy Oil Reservoir, Journal of Geophysical Research-Solid Earth, 122 (11), 8872-8891

    [12] Zhao, L*., Q. Yao, D. Han, R. Zhou, J. Geng, and H. Li, 2017, Frequency- and angle- dependent poroelastic seismic analysis for highly attenuating reservoirs, Geophysical Prospecting, 65(6), 1630-1648.

    [11] Zhu W*., L. Zhao, R. Shan, Modeling effective elastic properties of digital rocks using a new dynamic stress-strain simulation method, 2017, Geophysics, 82(6), MR163-MR174.

     

    2016

    [10] Zhao, L*., X. Qin, D. Han, J. Geng, Z. Yang, H. Cao, Rock-Physics modeling for the elastic properties of organic shale at different maturity stages, 2016, Geophysics, 81(5), D527-D541.

    [9] Zhao, L*., Q. Yao, D. Han, F. Yan, and M. Nasser,2016, Characterizing the effect of elastic interactions on the effective elastic properties of porous, cracked rocks, Geophysical Prospecting, 64(1), 157-169.

    [8] Li, H*., L. Zhao, D. Han, M. Sun, and Yu Zhang, 2016, Elastic properties of heavy oil sands: effects of temperature, pressure, and microstructure, Geophysics, 81(4), D453-464. SCI

    [7] Li, H*., D. Han, H. Yuan, X. Qin, and L. Zhao, 2016, Porosity of heavy oil sand: laboratory measurement and bound analysis, Geophysics, 81(2), D83-D90.

     

    2015 

    [6] Zhao, L*., D. Han, Q. Yao, R. Zhou and F. Yan, 2015, Seismic reflection dispersion due to wave-induced fluid flow in heterogeneous reservoir rocks, Geophysics, 80(3), D221-D235.

    [5] Yao, Q*., D. Han, F. Yan, and L. Zhao, 2015, Modeling attenuation and dispersion in porous heterogeneous rocks with dynamic fluid modulus, Geophysics, 80(3), D183-D194.

     

    2014 

    [4] Zhao, L*., J. Geng, J. Cheng, D. Han, and T. Guo,2014, Probabilistic lithofacies prediction from prestack seismic data in a heterogeneous carbonate reservoir, Geophysics, 79(5), M25-M34.

    [3] Yan, F*., Han, D, Q. Yao, and L. Zhao, 2014, Prediction of seismic wave dispersion and attenuation from ultrasonic velocity measurements, Geophysics, 79(5), WB1-WB8.

     

    2013 

    [2] Zhao, L*., M. Nasser, and D. Han, 2013, Quantitative geophysical pore type characterization and geological implications in carbonate reservoir, Geophysical Prospecting, 61(4), 827-841.

    [1] Zhao, L*, J. Geng, S. Zhang, and D. Yang, 2008, 1-D Controlled source electromagnetic forward modeling for marine gas hydrates studies: Applied Geophysics, 5(2), 121-126. 


  • 学术活动及社会服务

    学术期刊任职

    地球物理SCI期刊Geophysical Prospecting副主编(2023-至今)

    地球物理SCI期刊Journal of Geophysics and Engineering 副主编(2019-至今)

    JGR-solid earth, Geophysics, Geophysical Prospecting, Interpretation, AAPG Bulletin, IEEE TGRS, IEEE GRSL,Journal of Applied Geophysics, Journal of Earth Sciences、地球物理学报等期刊审稿人

     

    学术组织任职

    中国地球物理学会岩石物理专业委员会第一、二届委员会委员兼副秘书长

    Society of Exploration Geophysicists (SEG)会员

    European Association of Geoscientists and Engineers (EAGE) 会员

    American Association of Petroleum Geologists (AAPG) 会员.

    Society of Petrophysicists and Well Log Analysts (SPWLA)会员

  • 荣誉

    2021年,入选教育部“长江学者奖励计划”青年学者

    2021年,获上海市青年科技启明星计划

    2021年,获傅承义地球物理青年科技奖

    2020年,获刘光鼎地球物理青年科技奖

    2017年,中国科协“青年人才托举工程”

    2016年,上海市“晨光计划”

    2022年,上海市科技进步二等奖(4/10)


返回原图
/